165 research outputs found

    ELECTROMYOGRAPHIC INTRA INDIVIDUAL VARIABILITY IN FRONT CRAWL SWIMMING

    Get PDF
    The purpose of this study was to assess the intra-individual variability of two bilaterally measured EMG signals (deltoideus medialis and rectus abdominis) in front crawl swimming and compare the influence of the normalization technique on several variability measures. Fifteen well-trained adult male competitive swimmers were tested and four additional measures of variability besides mean and standard deviation were calculated. The repeatability of swimming movements was high for both tested muscles and one stroke cycle might be sufficient to determine a swimmers movement pattern. Variance ratio was suggested as a preferred additional measure of variability as it was least susceptible to differences in normalization method

    LOWER TRUNK MUSCLE ACTIVITY DURING FRONT CRAWL SWIMMING IN A SINGLE LEG AMPUTEE

    Get PDF
    This study examined lower trunk muscle activity during front crawl swimming in a single leg amputee and in a triathlete of equivalent swimming performance level. EMG of four lower trunk muscles was recorded and underwater video was made during a 50m all out front crawl swim. Compared to the triathlete, the amputee demonstrated relatively long periods of activity in the four muscles examined, less relaxation and less symmetry in muscle activity between right and left body side. In both athletes their individual lower trunk muscle activity patterns coincided with specific arm and leg kick movement phases. The individual patterns were consistent for all arm stroke cycles over the entire 50m swimming trial

    Classification of forefoot plantar pressure distribution in persons with diabetes : a novel perspective for the mechanical management of diabetic foot?

    Get PDF
    Background: The aim of this study was to identify groups of subjects with similar patterns of forefoot loading and verify if specific groups of patients with diabetes could be isolated from non-diabetics. Methodology/Principal Findings: Ninety-seven patients with diabetes and 33 control participants between 45 and 70 years were prospectively recruited in two Belgian Diabetic Foot Clinics. Barefoot plantar pressure measurements were recorded and subsequently analysed using a semi-automatic total mapping technique. Kmeans cluster analysis was applied on relative regional impulses of six forefoot segments in order to pursue a classification for the control group separately, the diabetic group separately and both groups together. Cluster analysis led to identification of three distinct groups when considering only the control group. For the diabetic group, and the computation considering both groups together, four distinct groups were isolated. Compared to the cluster analysis of the control group an additional forefoot loading pattern was identified. This group comprised diabetic feet only. The relevance of the reported clusters was supported by ANOVA statistics indicating significant differences between different regions of interest and different clusters. Conclusion/s Significance: There seems to emerge a new era in diabetic foot medicine which embraces the classification of diabetic patients according to their biomechanical profile. Classification of the plantar pressure distribution has the potential to provide a means to determine mechanical interventions for the prevention and/or treatment of the diabetic foot

    Matrix metalloproteinase 13 modulates intestinal epithelial barrier integrity in inflammatory diseases by activating TNF

    Get PDF
    Several pathological processes, such as sepsis and inflammatory bowel disease (IBD), are associated with impairment of intestinal epithelial barrier. Here, we investigated the role of matrix metalloproteinase MMP13 in these diseases. We observed that MMP13(-/-) mice display a strong protection in LPS- and caecal ligation and puncture-induced sepsis. We could attribute this protection to reduced LPS-induced goblet cell depletion, endoplasmic reticulum stress, permeability and tight junction destabilization in the gut of MMP13(-/-) mice compared to MMP13(+/+) mice. Both in vitro and in vivo, we found that MMP13 is able to cleave pro-TNF into bioactive TNF. By LC-MS/MS, we identified three MMP13 cleavage sites, which proves that MMP13 is an alternative TNF sheddase next to the TNF converting enzyme TACE. Similarly, we found that the same mechanism was responsible for the observed protection of the MMP13(-/-) mice in a mouse model of DSS-induced colitis. We identified MMP13 as an important mediator in sepsis and IBD via the shedding of TNF. Hence, we propose MMP13 as a novel drug target for diseases in which damage to the gut is essential

    How reliable are knee kinematics and kinetics during side-cutting manoeuvres?

    Get PDF
    INTRODUCTION: Side-cutting tasks are commonly used in dynamic assessment of ACL injury risk, but only limited information is available concerning the reliability of knee loading parameters. The aim of this study was to investigate the reliability of side-cutting data with additional focus on modelling approaches and task execution variables. METHODS: Each subject (n=8) attended six testing sessions conducted by two observers. Kinematic and kinetic data of 45° side-cutting tasks was collected. Inter-trial, inter-session, inter-observer variability and observer/trial ratios were calculated at every time-point of normalised stance, for data derived from two modelling approaches. Variation in task execution variables was regressed against that of temporal profiles of relevant knee data using one-dimensional statistical parametric mapping. RESULTS: Variability in knee kinematics was consistently low across the time-series waveform (≤5°), but knee kinetic variability was high (31.8, 24.1 and 16.9Nm for sagittal, frontal and transverse planes, respectively) in the weight acceptance phase of the side-cutting task. Calculations conveyed consistently moderate-to-good measurement reliability. Inverse kinematic modelling reduced the variability in sagittal (∼6Nm) and frontal planes (∼10Nm) compared to direct kinematic modelling. Variation in task execution variables did not explain any knee data variability. CONCLUSION: Side-cutting data appears to be reliably measured, however high knee moment variability exhibited in all planes, particularly in the early stance phase, suggests cautious interpretation towards ACL injury mechanics. Such variability may be inherent to the dynamic nature of the side-cutting task or experimental issues not yet known

    Mapping current research trends on neuromuscular risk factors of non-contact ACL injury.

    Get PDF
    The aim of this systematic review was (i) to identify neuromuscular markers that have been predictive of a primary non-contact ACL injury, (ii) to assess whether proposed risk factors have been supported or refuted in the literature from cohort and case-control studies, and (iii) to reflect on the body of research that aims at developing field based tools to assess risk through an association with these risk factors. Electronic searches were undertaken, of PubMed, SCOPUS, Web of Science, CINAHL and SPORTDiscus examining neuromuscular risk factors associated with ACL injury published between January 1990 and July 2015. The evidence supporting neuromuscular risk factors of ACL injury is limited where only 4 prospective cohort studies were found. Three of which looked into muscular capacity and one looked into muscular activation patterns but none of the studies found strong evidence of how muscular capacity or muscular activation deficits are a risk factor for a primary non-contact ACL injury. A number of factors associated to neural control and muscular capacity have been suggested to be related to non-contact ACL injury risk but the level of evidence supporting these risk factors remains often elusive, leaving researchers and practitioners uncertain when developing evidence-based injury prevention programs

    Mapping current research trends on anterior cruciate ligament injury risk against the existing evidence: In vivo biomechanical risk factors.

    Get PDF
    BACKGROUND: Whilst many studies measure large numbers of biomechanical parameters and associate these to anterior cruciate ligament injury risk, they cannot be considered as anterior cruciate ligament injury risk factors without evidence from prospective studies. A review was conducted to systematically assess the in vivo biomechanical literature to identify biomechanical risk factors for non-contact anterior cruciate ligament injury during dynamic sports tasks; and to critically evaluate the research trends from retrospective and associative studies investigating non-contact anterior cruciate ligament injury risk. METHODS: An electronic literature search was undertaken on studies examining in vivo biomechanical risk factors associated with non-contact anterior cruciate ligament injury. The relevant studies were assessed by classification; level 1 - a prospective cohort study, level 2 - a retrospective study or level 3 - an associative study. FINDINGS: An initial search revealed 812 studies but this was reduced to 1 level 1 evidence study, 20 level 2 evidence studies and 175 level 3 evidence studies that met all inclusion criteria. Level 1 evidence showed that the knee abduction angle, knee abduction moment and ground reaction force were biomechanical risk factors. Nine level 2 studies and eighty-three level 3 studies used these to assess risk factors in their study. Inconsistencies in results and methods were observed in level 2 and 3 studies. INTERPRETATION: There is a lack of high quality, prospective level 1 evidence related to biomechanical risk factors for non-contact anterior cruciate ligament injury. More prospective cohort studies are required to determine risk factors and provide improved prognostic capability
    corecore